Stratasys ABS-M30i

Acrylonitrile Butadiene Styrene

Stratasys

Message:

Production-Grade Thermoplastic for Fortus 3D Production Systems

ABS-M30i is a high strength material well suited for the medical, pharmaceutical and food packaging industries. Parts manufactured with ABS-M30i material are biocompatible (ISO 10993 USP Class VI) and can be gamma or EtO sterilized. When combined with Fortus® 3D Production Systems, ABS-M30i gives you biocompatible Real Parts™ with excellent mechanical properties that are well suited for conceptual modeling, functional prototyping, manufacturing tools, and end-use-parts.

General Information					
Features	Biocompatible				
	Durable				
	Ethylene Oxide Sterilizable				
	Good Chemical Resistance				
	High Heat Resistance				
	High Impact Resistance				
	High Strength				
	Radiation Sterilizable				
Uses	Engineering Parts				
	Food Packaging				
	Medical Devices				
	Medical/Healthcare Applications				
	Modeling Material				
	Packaging				
	Pharmaceutical Packaging				
	Pharmaceuticals				
	Prototyping				
Agency Ratings	USP Class VI				
Appearance	lvory				
Processing Method	3D Printing, Fused Filament Fabrication (FFF)				
Physical	Nominal Value	Unit	Test Method		
Specific Gravity	1.04	g/cm³	ASTM D792		
Thickness - Layer Capability	127.0 to 330.2	μm			
Volume Resistance ¹	6.0E+13 to 1.5E+14	ohms	ASTM D257		
Hardness	Nominal Value	Unit	Test Method		
Rockwell Hardness	110		ASTM D785		
Mechanical	Nominal Value	Unit	Test Method		
Tensile Modulus ² (3.18 mm)	2410	MPa	ASTM D638		

Tensile Strength ³ (3.18 mm)	35.9	MPa	ASTM D638
Tensile Elongation ⁴ (Break, 3.18 mm)	4.0	%	ASTM D638
Flexural Modulus ⁵	2320	MPa	ASTM D790
Flexural Strength ⁶	60.7	MPa	ASTM D790
Impact	Nominal Value	Unit	Test Method
Notched Izod Impact (23°C)	140	J/m	ASTM D256A
Unnotched Izod Impact (23°C)	280	J/m	ASTM D256
Thermal	Nominal Value	Unit	Test Method
Deflection Temperature Under Load			ASTM D648
0.45 MPa, Unannealed, 3.18 mm	95.6	°C	
1.8 MPa, Unannealed, 3.18 mm	82.2	°C	
Glass Transition Temperature	108	°C	DSC
Vicat Softening Temperature	98.9	°C	ASTM D1525 ⁷
CLTE			ASTM E831
Flow	8.8E-5	cm/cm/°C	
Transverse	8.5E-5	cm/cm/°C	
Electrical	Nominal Value	Unit	Test Method
Dielectric Strength	3.1 to 15	kV/mm	ASTM D149
Dielectric Constant ⁸	2.70 to 2.90		ASTM D150
Dissipation Factor ⁹	5.1E-3 to 5.3E-3		ASTM D150
Flammability	Nominal Value	Unit	Test Method
Flame Rating (1.50 mm)	НВ		UL 94
NOTE			
	All Electrical Property values were generated from the average of test plaques built with default part density (solid). Test plaques were 4.0 x 4.0 x 0.1 inches (102 x 102 x 2.5 mm) and were built both in the flat and vertical orientation. The range of values is mostly the result		
	of the difference in properties of		
1.	-		
1. 2.	of the difference in properties of test plaques built in the flat vs.		
	of the difference in properties of test plaques built in the flat vs. vertical orientation.		
2.	of the difference in properties of test plaques built in the flat vs. vertical orientation. Type I, 5.1 mm/min		
2.	of the difference in properties of test plaques built in the flat vs. vertical orientation. Type I, 5.1 mm/min Type I, 5.1 mm/min		
 2. 3. 4. 	of the difference in properties of test plaques built in the flat vs. vertical orientation. Type I, 5.1 mm/min Type I, 5.1 mm/min Type I, 5.1 mm/min Method I (3 point load), 1.3		

All Electrical Property values were generated from the average of test plaques built with default part density (solid). Test plaques were $4.0 \times 4.0 \times 0.1$ inches ($102 \times 102 \times 2.5$ mm) and were built both in the flat and vertical orientation. The range of values is mostly the result of the difference in properties of test plaques built in the flat vs. vertical orientation.

8.

All Electrical Property values were generated from the average of test plaques built with default part density (solid). Test plaques were $4.0 \times 4.0 \times 0.1$ inches ($102 \times 102 \times 2.5$ mm) and were built both in the flat and vertical orientation. The range of values is mostly the result of the difference in properties of test plaques built in the flat vs. vertical orientation.

9.

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

Recommended distributors for this material

Susheng Import & Export Trading Co.,Ltd.

Tel: +86 21 5895 8519

Phone: +86 13424755533 Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China

