DOW™ LLDPE DNDA-1082 NT 7

Linear Low Density Polyethylene Resin

The Dow Chemical Company

Message:

Injection molding

Lids

Excellent processability with good low temperature impact strength and rigidity

Very narrow molecular weight distribution

Complies with EU, No 10/2011

Complies with CANADIAN HPFB NO OBJECTION (WITH LIMITATIONS)

Complies with U.S. FDA 21 CFR 177.1520 (c)3.1a

Consult the regulations for complete details.

DOW DNDA-1082 NT 7 Linear Low Density Polyethylene (LLDPE) Resin is produced using UNIPOL[™] PE Process Technology and is intended for highspeed injection molding of thin-walled parts such as downgauged lids. This resin has been designed to have an excellent balance of processability, impact strength, and rigidity.

General Information

Agency Ratings

FDA 21 CFR 177.1520(c) 3.1a

HPFB (Canada) No Objection 2

Europe No 10/2011

Forms	Particle		
Processing Method	Injection molding		
Physical	Nominal Value	Unit	Test Method
Specific Gravity	0.933	g/cm³	ASTM D792
Melt Mass-Flow Rate (MFR) (190°C/2.16	5		
kg)	160	g/10 min	ASTM D1238
Hardness	Nominal Value	Unit	Test Method
Durometer Hardness (Shore D)	52		ASTM D2240
Mechanical	Nominal Value	Unit	Test Method
Tensile Strength			ASTM D638
Yield	16.5	MPa	ASTM D638
Fracture	8.96	MPa	ASTM D638
Tensile Elongation			ASTM D638
Yield	8.0	%	ASTM D638
Fracture	50	%	ASTM D638
Flexural Modulus - 2% Secant	572	MPa	ASTM D790B
Impact	Nominal Value	Unit	Test Method
Tensile Impact Strength ¹	105	kJ/m²	ASTM D1822
Thermal	Nominal Value	Unit	Test Method
Deflection Temperature Under Load (0.4	45		
MPa, Unannealed)	52.2	°C	ASTM D648
Brittleness Temperature	-20.0	°C	ASTM D746

Vicat Softening Temperature	122	°C	ASTM D1525		
Melting Temperature (DSC)	125	°C	Internal method		
Peak Crystallization Temperature (DSC)	113	°C	Internal method		
Additional Information					
根据 ASTM D 4976 进行基板模制和测试.					
NOTE					
1.	Type s				

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

Recommended distributors for this material

Susheng Import & Export Trading Co.,Ltd.

Tel: +86 21 5895 8519

Phone: +86 13424755533

Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China

