Vamac® VMX-2122

Ethylene Acrylic Elastomer

DuPont Performance Elastomers

Message:

Vamac[®] ethylene acrylic elastomer, introduced in 1975, has been successfully used for many years in demanding automotive applications, where excellent resistance to heat, engine and transmission fluids or Blow-By is required. DuPont's latest manufacturing technology allows production of enhanced AEM grades that are significantly improved compared to the existing standard Vamac[®] elastomers. These grades, designated and sold as Vamac[®] Ultra, provide a true step-change improvement in processability, performance and customer value for targeted applications. The new manufacturing technology has now also been applied to a new EMA Dipolymer, called VMX-2122.

General Information			
Additive	Processing aid		
Features	Workability, good		
	Heat resistance, high		
	Good demoulding performance		
	Viscosity, High		
Uses	Washer		
	Pipe		
	Seals		
	Application in Automobile Field		
Appearance	Clear/transparent		
Forms	bag		
Processing Method	Extrusion		
Physical	Nominal Value	Unit	Test Method
Mooney Viscosity (ML 1+4, 100°C)	18 - 34	MU	ASTM D1646
Hardness	Nominal Value	Unit	Test Method
Durometer Hardness ¹ (Shao A, 1 second,			
6.00mm)	79		ASTM D2240
Elastomers	Nominal Value	Unit	Test Method
Tensile Stress (100% Strain)	7.00	MPa	ASTM D412
Tensile Stress (Break)	11.5	МРа	ISO 37
Tensile Elongation (Break)	270	%	ASTM D412
Tear Strength			ISO 34-1
2	6.5	kN/m	ISO 34-1
³	38	kN/m	ISO 34-1
Aging	Nominal Value	Unit	Test Method
Change in Tensile Strength in Air			ASTM D573
100°C, 168 hr	7.0	%	ASTM D573
100% strain, 160°C, 168 hr	22	%	ASTM D573
175°C, 168 hr	2.0	%	ASTM D573

100% strain, 175°C, 168 hr	33	%	ASTM D573
Change in Ultimate Elongation in Air			ASTM D573
160°C, 168 hr	-10	%	ASTM D573
175°C, 168 hr	-31	%	ASTM D573
Change in Durometer Hardness in Air			ASTM D573
Shao A, 160°C, 168 hr	4.0		ASTM D573
Shao A, 175°C, 168 hr	5.0		ASTM D573
Change in Tensile Strength			ASTM D471
100°C, 168 hr, in IRM 903 oil	3.0	%	ASTM D471
100% strain, 100°C, 168 hr, in IRT 903 oil	2.9	%	ASTM D471
Change in Ultimate Elongation (100°C, 168 hr, in IRM 903 oil)	-32	%	ASTM D471
Change in Durometer Hardness (Support A, 100°C, 168 hr, in IRM 903 oil)	-13		ASTM D471
Change in Mass (100°C, 168 hr, in IRM 903 oil)	16	%	ASTM D471
Change in Volume (100°C, 168 hr, in IRM			
903 oil)	27	%	ASTM D471
Thermal	Nominal Value	Unit	Test Method
Glass Transition Temperature ⁴	-27.8	°C	ASTM E1356
Additional Information	Nominal Value	Unit	Test Method
Volatiles		wt%	Internal method
NOTE			
1.	Plied		
2.	Method A, Pant-Shaped Specimen		
3.	Method B, right-angle specimen (without cut)		
4.	10°C/min		

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

Recommended distributors for this material

Susheng Import & Export Trading Co.,Ltd.

Tel: +86 21 5895 8519

Phone: +86 13424755533

Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China

