EOS PA 2200 Balance 1.0

Polyamide 12

EOS GmbH

Message:

This whitish fine powder PA 2200 on the basis of polyamide 12 serves with its very well-balanced property profile a wide variety of applications. Laser-sintered parts made from PA 2200 possess excellent material properties:

high strength and stiffness

good chemical resistance

excellent long-term constant behaviour

high selectivity and detail resolution

various finishing possibilities (e.g. metallisation, stove enamelling, vibratory grinding, tub colouring, bonding, powder coating, flocking)

bio compatible according to EN ISO 10993-1 and USP/level VI/121 °C

approved for food contact in compliance with the EU Plastics Directive 2002/72/EC (exception: high alcoholic foodstuff)

Typical applications of the material are fully functional plastic parts of highest quality. Due to the excellent mechanical properties the material is often used to substitute typical injection moulding plastics. The biocompatibility allows its use e.g. for prostheses, the high abrasion resistance allows e.g. the realisation of movable part connections.

120 µm layer thickness:

The advantage of the Balance parameter set is equilibrium. The layer thickness of 120 µm offers a perfect balance between production costs, mechanical properties, surface quality and accuracy. It is therefore suitable for parts with varying geometries, dimensions and requirements.

General Information					
Features	Biocompatible				
	Food Contact Acceptable				
	Good Abrasion Resistance				
	Good Chemical Resistance				
	Good Surface Finish				
	High Stiffness				
	High Strength				
Uses	Engineering Parts				
	Medical/Healthcare Applications				
	Prosthetics				
	Prototyping				
Agency Ratings	EU 2002/72/EC				
	ISO 10993				
	USP Class VI				
Appearance	White				
Forms	Powder				
Processing Method	3D Printing, Laser Sintering/Melting				
Physical	Nominal Value	Unit	Test Method		
Density	0.930	g/cm³	Internal Method		
Thickness - Layer	120.0	μm			
Hardness	Nominal Value	Unit	Test Method		

Shore Hardness (Shore D, 15 sec)	75		ISO 868
Mechanical	Nominal Value	Unit	Test Method
Tensile Modulus ¹	1650	MPa	ISO 527-2
Tensile Stress			
2	42.0	MPa	ISO 527-2
³	48.0	MPa	ISO 527-2
Tensile Strain			
Break ⁴	18	%	ISO 527-2
Break ⁵	4.0	%	ISO 527-2
Flexural Modulus ⁶ (23°C)	1500	MPa	ISO 178
Impact	Nominal Value	Unit	Test Method
Charpy Notched Impact Strength ⁷ (23°C)	4.8	kJ/m²	ISO 179/1eA
Charpy Unnotched Impact Strength ⁸ (23°C)	53	kJ/m²	ISO 179/1eU
Notched Izod Impact Strength (23°C)	4.4	kJ/m²	ISO 180/1A
Thermal	Nominal Value	Unit	Test Method
Vicat Softening Temperature	163	°C	ISO 306/B50
Melting Temperature	176	°C	ISO 11357
NOTE			
1.	X Direction		
2.	Z Direction		
3.	Y Direction		
4.	X Direction		
5.	Z Direction		
6.	X Direction		
7.	X Direction		
8.	X Direction		

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

Recommended distributors for this material

Susheng Import & Export Trading Co.,Ltd.

Tel: +86 21 5895 8519

Phone: +86 13424755533 Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China

