NEMCON H PA DP117/X3

Polyetheretherketone

Ovation Polymers Inc.

Message:

NemconTM H-series products are designed for use in high performance electronic assemblies where heat removal is critical to system performance. NemconTM H PA DP117/X3 is a thermally conductive polyetheretherketone, offering excellent chemical resistance, good stiffness and high HDT. It should be used in demanding applications where thermal management must be accomplished in harsh environments.

General Information			
Features	Heat conduction		
	Rigid, good		
	Good chemical resistance		
	Heat resistance, high		
Uses	Electric Motor Housings		
	Electrical/Electronic Applications		
	Electrical components		
	High temperature application		
	Aerospace applications		
	Military application		
	Shell		
Forms	Particle		
Physical	Nominal Value	Unit	Test Method
Specific Gravity	1.56	g/cm³	ASTM D792
Mechanical	Nominal Value	Unit	Test Method
Tensile Modulus ¹ (23°C)	4630	MPa	ASTM D638
Tensile Strength ² (Break, 23°C)	42.0	MPa	ASTM D638
Tensile Elongation ³ (Break, 23°C)	1.3	%	ASTM D638
Flexural Modulus ⁴ (23°C, 50.0 mm Span)	4740	MPa	ASTM D790
Flexural Strength ⁵ (Break, 23°C, 50.0 mm Span)	90.0	MPa	ASTM D790
Impact	Nominal Value	Unit	Test Method
Notched Izod Impact (23°C)	56	J/m	ASTM D256
Thermal	Nominal Value	Unit	Test Method
Deflection Temperature Under Load (1.8	Northinal Value	Grint	100t Motified
MPa, Unannealed, 3.20 mm)	125	°C	ASTM D648
Thermal Conductivity (23°C)	1.3	W/m/K	ASTM C177
Electrical	Nominal Value	Unit	Test Method
Surface Resistivity	6.0E+12	ohms	ASTM D257
Additional Information			

The value listed as Thermal Conductivity, ASTM C177 was tested in accordance with ASTM E1461.			
NOTE			
1.	50 mm/min		
2.	50 mm/min		
3.	50 mm/min		
4.	1.3 mm/min		
5.	1.3 mm/min		

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

Recommended distributors for this material

Susheng Import & Export Trading Co.,Ltd.

Tel: +86 21 5895 8519

Phone: +86 13424755533

Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China

