Celstran® PP-GF30-0501P10/13

Polypropylene

Celanese Corporation

Message:

Material code according to ISO 1043-1: PP

Heat stabilized polypropylene reinforced with 30 weight percent long glass fibers. The fibers are chemically coupled to the polypropylene matrix. The impact properties are enhanced.

The pellets are cylindrical and normally as well as the embedded fibers 10 mm long.

Parts molded of CELSTRAN have outstanding mechanical properties such as high strength and stiffness combined with high heat deflection. The notched impact strength is increased at elevated and low temperatures due to the fiber skeleton built in the parts. The long fiber reinforcement reduces creep significantly.

The very isotropic shrinkage in the molded parts minimizes the warpage.

Complex parts can be manufactured with high reproducibility by injection molding.

Application field: Functional/structural parts for automotive

General Information					
Filler / Reinforcement	Long glass fiber, 30% filler by weight				
Additive	heat stabilizer				
Features	Low warpage				
	Rigidity, high				
	High strength				
	Chemical coupling				
	Impact resistance, good				
	Good creep resistance				
	Low temperature impact resistance				
	Thermal Stability				
Uses	Application in Automobile Field				
RoHS Compliance	Contact manufacturer				
Forms	Particle				
Processing Method	Injection molding				
Resin ID (ISO 1043)	РР				
Physical	Nominal Value	Unit	Test Method		
Density	1.12	g/cm³	ISO 1183		
Mechanical	Nominal Value	Unit	Test Method		
Tensile Modulus					
	6200	MPa	ISO 527-2/1A/1		
80°C	4400	MPa	ISO 527-2/1A		
Tensile Stress					

Fracture	110	MPa	ISO 527-2/1A/5
80°C	63.0	MPa	ISO 527-2/1A
Tensile Strain			
Fracture	2.5	%	ISO 527-2/1A/5
Fracture, 80°C	3.3	%	ISO 527-2/1A
Flexural Modulus			ISO 178
23°C	6050	MPa	ISO 178
80°C	4200	MPa	ISO 178
Flexural Stress			ISO 178
23°C	165	MPa	ISO 178
80°C	78.0	MPa	ISO 178
Impact	Nominal Value	Unit	Test Method
Charpy Notched Impact Strength			ISO 179/1eA
-30°C	29	kJ/m²	ISO 179/1eA
23°C	32	kJ/m²	ISO 179/1eA
Charpy Unnotched Impact Strength	ISO 179/1eU		
-30°C	87	kJ/m²	ISO 179/1eU
23°C	78	kJ/m²	ISO 179/1eU
Thermal	Nominal Value	Unit	Test Method
Heat Deflection Temperature			
1.8 MPa, not annealed	156	°C	ISO 75-2/A
8.0 MPa, not annealed	122	°C	ISO 75-2/C
Injection	Nominal Value	Unit	
Drying Temperature	90.0 - 100	°C	
Drying Time	4.0	hr	
Suggested Max Moisture	0.20	%	
Rear Temperature	220 - 240	°C	
Middle Temperature	240 - 250	°C	
Front Temperature	250 - 260	°C	
Nozzle Temperature	240 - 270	°C	
Processing (Melt) Temp	210 270		
	230 - 270	°C	
Mold Temperature		°C	
Mold Temperature Injection Pressure	230 - 270		
	230 - 270 30.0 - 70.0	°C	
Injection Pressure	230 - 270 30.0 - 70.0 60.0 - 120	°C	

Manifold Temperature: 230 to 270°CZone 4 Temperature: 260 to 270°CFeed Temperature: 20 to 50° C

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

Susheng Import & Export Trading Co.,Ltd.

Tel: +86 21 5895 8519

Phone: +86 13424755533 Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China

