EOS Alumide®

Polyamide 12

EOS GmbH

Message:

Alumide is a metallic grey, aluminium-filled polyamide 12 powder, which is characterised by its high stiffness, metallic appearance and good postprocessing possibilities.

Laser-sintered parts made from Alumide possess excellent material properties:

excellent dimensional accuracy

well-balanced ratio of density and stiffness

increased thermal conductivity

good machinability

The surfaces of Alumide parts can be refined very easily by grinding, polishing or coating. The machining of Alumide laser-sintered parts is simplified through the cut breaking effect of the aluminium filling. A typical application for Alumide is the manufacture of stiff parts of metallic appearance for applications in automotive manufacture (e.g. wind tunnel tests or parts that are not safety-relevant), for tool inserts for injecting and moulding small production runs, for illustrative models (metallic appearance), for education and jig manufacture et al.

General Information				
Filler / Reinforcement	Aluminum			
Features	Filled			
	Good Processability			
	High Stiffness			
	Metallized			
Uses	Automotive Applications			
	Modeling Material			
	Mold Making			
	Molds/Dies/Tools			
	Prototyping			
	Tooling			
Appearance	Grey			
Forms	Powder			
Processing Method	3D Printing, Laser Sintering/Melting			
Physical	Nominal Value	Unit	Test Method	
Density	1.36	g/cm³	Internal Method	
Hardness	Nominal Value	Unit	Test Method	
Shore Hardness (Shore D, 15 sec)	76		ISO 868	
Mechanical	Nominal Value	Unit	Test Method	
Tensile Modulus ¹	3800	MPa	ISO 527-2	
Tensile Stress ²	48.0	MPa	ISO 527-2	
Tensile Strain ³ (Break)	4.0	%	ISO 527-2	
Flexural Modulus ⁴ (23°C)	3600	MPa	ISO 178	
Flexural Stress ⁵	72.0	MPa	ISO 178	

Impact	Nominal Value	Unit	Test Method
Charpy Notched Impact Strength ⁶ (23°C)	4.6	kJ/m²	ISO 179/1eA
Charpy Unnotched Impact Strength ⁷ (23°C)	29	kJ/m²	ISO 179/1eU
Thermal	Nominal Value	Unit	Test Method
Heat Deflection Temperature ⁸			
0.45 MPa, Unannealed	175	°C	ISO 75-2/B
1.8 MPa, Unannealed	144	°C	ISO 75-2/A
Vicat Softening Temperature	169	°C	ISO 306/B50
Melting Temperature ⁹	176	°C	ISO 11357
Electrical	Nominal Value	Unit	Test Method
Surface Resistivity	5.0E+14	ohms	IEC 60093
Volume Resistivity ¹⁰	3.0E+14	ohms·cm	IEC 60093
Electric Strength	0.10	kV/mm	IEC 60243-1
Relative Permittivity			IEC 60250
100 Hz	13.0		
1 MHz	10.0		
Dissipation Factor (1 MHz)	0.018		IEC 60250
NOTE			
1.	X Direction		
2.	Y Direction		
3.	X Direction		
4.	X Direction		
5.	X Direction		
6.	X Direction		
7.	X Direction		
8.	X Direction		
9.	20°C/min		
10.	X Direction		

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

Recommended distributors for this material

Susheng Import & Export Trading Co.,Ltd.

Tel: +86 21 5895 8519

Phone: +86 13424755533

Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China

