Stratasys PC

Polycarbonate

Stratasys

Message:

Production-Grade Thermoplastic for Fortus 3D Production Systems

A true industrial thermoplastic, PC (polycarbonate) is widely used in automotive, aerospace, medical and many other applications. PC offers accuracy, durability and stability, creating strong parts that withstand functional testing. A PC part manufactured on a Fortus® 3D Production System is 5-60 percent stronger than a part made on previous FDM® systems. It also has superior mechanical properties to ABS and a number of other thermoplastics. When combined with a Fortus system, PC gives you Real Parts™ for conceptual modeling, functional prototyping, manufacturing tools, and end-use-parts.

General Information					
Features	Durable				
	Good Chemical Resistance				
	Good Sterilizability				
	Good Strength				
	High Heat Resistance				
	High Impact Resistance				
Uses	Aerospace Applications				
Uses	Automotive Applications				
	Industrial Applications				
	Industrial Parts				
	Medical/Healthcare Applications				
	Prototyping				
UL File Number	E345258				
Appearance	White				
Processing Method	3D Printing, Fused Filament Fabrication (FFF)				
Physical	Nominal Value	Unit	Test Method		
Specific Gravity	1.20	g/cm³	ASTM D792		
Thickness - Layer Capability	127.0 to 330.2	μm			
Volume Resistance ¹	6.0E+13 to 2.0E+14	ohms	ASTM D257		
Hardness	Nominal Value	Unit	Test Method		
Rockwell Hardness (R-Scale)	115		ASTM D785		
Mechanical	Nominal Value	Unit	Test Method		
Tensile Modulus ² (3.18 mm)	2280	МРа	ASTM D638		
Tensile Strength ³ (3.18 mm)	67.6	МРа	ASTM D638		
Tensile Elongation ⁴ (Break, 3.18 mm)	5.0	%	ASTM D638		
Flexural Modulus ⁵	2230	MPa	ASTM D790		
Flexural Strength ⁶	104	МРа	ASTM D790		
Impact	Nominal Value	Unit	Test Method		

Notched Izod Impact (23°C)	53	J/m	ASTM D256A
Unnotched Izod Impact (23°C)	320	J/m	ASTM D256
Thermal	Nominal Value	Unit	Test Method
Deflection Temperature Under Load			ASTM D648
0.45 MPa, Unannealed	138	°C	
1.8 MPa, Unannealed	127	°C	
Glass Transition Temperature	161	°C	DMA
Vicat Softening Temperature	139	°C	ASTM D1525
CLTE - Flow	6.8E-5	cm/cm/°C	ASTM E831
Electrical	Nominal Value	Unit	Test Method
Dielectric Strength	14 to 15	kV/mm	ASTM D149
Dielectric Constant ⁷	2.80 to 3.00		ASTM D150
Dissipation Factor ⁸	5.0E-4 to 6.0E-4		ASTM D150
Flammability	Nominal Value	Unit	Test Method
Flame Rating	НВ		UL 94
NOTE			
1. 2.	generated from the average of test plaques built with default part density (solid). Test plaques were 4.0 x 4.0 x 0.1 inches (102 x 102 x 2.5 mm) and were built both in the flat and vertical orientation. The range of values is mostly the result of the difference in properties of test plaques built in the flat vs. vertical orientation. Type I, 5.1 mm/min		
3.	Type I, 5.1 mm/min		
4.	Type I, 5.1 mm/min		
5.	Method I (3 point load), 1.3 mm/min		
6.	Method I (3 point load), 1.3 mm/min		
7.	All Electrical Property values were generated from the average of test plaques built with default part density (solid). Test plaques were 4.0 x 4.0 x 0.1 inches (102 x 102 x 2.5 mm) and were built both in the flat and vertical orientation. The range of values is mostly the result of the difference in properties of test plaques built in the flat vs. vertical orientation.		

All Electrical Property values were generated from the average of test plaques built with default part density (solid). Test plaques were $4.0 \times 4.0 \times 0.1$ inches ($102 \times 102 \times 2.5$ mm) and were built both in the flat and vertical orientation. The range of values is mostly the result of the difference in properties of test plaques built in the flat vs. vertical orientation.

8.

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

Recommended distributors for this material

Susheng Import & Export Trading Co.,Ltd.

Tel: +86 21 5895 8519

Phone: +86 13424755533 Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China

