Torlon® 4275

Polyamide-imide

Solvay Specialty Polymers

Message:

Torlon 4275 is a wear-resistant polyamide-imide (PAI). The mechanical properties and wear resistance of this grade resin have achieved an excellent balance. It has high flexural strength and compressive strength, low friction coefficient and excellent wear resistance under high flow rate and high pressure conditions. Torlon PAI has the highest strength and rigidity among all thermoplastic resins that can withstand high temperatures of 275 °C(525 °F). And has excellent wear resistance, creep resistance and chemical resistance. Torlon 4275 polyamide-imide resin can be used in thrust washers, spline liners, valve seats, bushings, bearings, wear rings, cams and other products that need to maintain strength and wear resistance under high temperature conditions.

General Information	
Additive	PTFE graphite lubricant
Features	Semi-conductive
	Low friction coefficient
	High temperature strength
	Good creep resistance
	Good chemical resistance
	Good wear resistance
	Heat resistance, high
	Self-lubricating
	Flame retardancy
Uses	Bushing
	Gear
	Transfer application
	Washer
	Aircraft applications
	Industrial components
	Industrial application
	Roller
	Aerospace applications
	Machine/mechanical parts
	Metal substitution
	Seals
	Sealing device
	Application in Automobile Field
	Thrust washer
	Bearing
RoHS Compliance	RoHS compliance
Forms	Particle

Processing Method

Machining

Profile extrusion molding

Injection molding

Multi-Point Data	Isothermal Stress vs. Strain (ISO 11	403-1)	
Physical	Nominal Value	Unit	Test Method
Specific Gravity	1.51	g/cm³	ASTM D792
Molding Shrinkage - Flow	0.25 - 0.45	%	ASTM D955
Water Absorption (24 hr)	0.33	%	ASTM D570
Mechanical	Nominal Value	Unit	Test Method
Tensile Modulus			
1	7790	MPa	ASTM D1708
	8830	MPa	ASTM D638
Tensile Strength	117	MPa	ASTM D638
Tensile Stress ²	131	MPa	ASTM D1708
Tensile Elongation			
Fracture ³	7.0	%	ASTM D1708
Fracture	2.6	%	ASTM D638
Flexural Modulus			ASTM D790
23°C	7310	MPa	ASTM D790
232°C	5100	MPa	ASTM D790
Flexural Strength			ASTM D790
23°C	208	MPa	ASTM D790
232°C	110	MPa	ASTM D790
Compressive Modulus	4000	MPa	ASTM D695
Compressive Strength	123	MPa	ASTM D695
Coefficient of Friction			
4	0.15		ASTM D1894
5	0.050		ASTM D1894
6	0.31		ASTM D3702
7	0.29		ASTM D3702
Wear Factor			ASTM D3702
5.2 MPa, 0.38 m/sec ⁸	1.4	10^-8 mm³/N·m	ASTM D3702
6.9 MPa, 0.38 m/sec ⁹	14	10^-8 mm³/N·m	ASTM D3702
3.4 MPa, 0.25 m/sec ¹⁰	26	10^-8 mm³/N · m	ASTM D3702
0.22 MPa, 4.1 m/sec ¹¹	35	10^-8 mm³/N·m	ASTM D3702
Impact	Nominal Value	Unit	Test Method
Notched Izod Impact	85	J/m	ASTM D256
Unnotched Izod Impact	270	J/m	ASTM D256
Thermal	Nominal Value	Unit	Test Method
Deflection Temperature Under Load (1.8 MPa, Unannealed)	280	°C	ASTM D648

Thermal Conductivity	0.65	W/m/K	ASTM C177
Coefficient of Linear Thermal Expansion	2.5E-5	cm/cm/°C	ASTM D696
Electrical	Nominal Value	Unit	Test Method
Surface Resistivity	4.0E+17	ohms	ASTM D257
Volume Resistivity	8.0E+15	ohms·cm	ASTM D257
Injection	Nominal Value	Unit	
Drying Temperature	177	°C	
Drying Time	3.0	hr	
Suggested Max Moisture	0.050	%	
Rear Temperature	304	°C	
Nozzle Temperature	371	°C	
Mold Temperature	199 - 216	°C	
Back Pressure	6.89	MPa	
Screw Speed	50 - 100	rpm	
Screw L/D Ratio	18.0:1.0 - 24.0:1.0		
Injection instructions			

最低干燥条件:350 °F (177 °C)温度下3小时, 300 °F (149℃)温度下4小时,或250 °F (121 °C)温度下16小时. 压缩比:1:1~1.5:1 开始时,压力保持在较高的设定值6,000-8,000 psi(41.37-55.16MPa),几秒钟后,降至~3,000-5,000psi(20.69-34.48MPa),进行保压. 成型部件需进行后固化.

NOTE

1.

2.

3.

Previously, ASTM standard test
method D1708 was used to
measure the tensile properties of
PAI and similar materials because
small samples can save materials.
The most widely used now is the
ASTM D638 1 Bar specimen. The
D1708 value contained is only used
as a historical reference and is not
used for comparison with the D638
value.
Previously, ASTM standard test
method D1708 was used to
measure the tensile properties of
PAI and similar materials because
small samples can save materials.
The most widely used now is the
ASTM D638 1 Bar specimen. The
D1708 value contained is only used
as a historical reference and is not
used for comparison with the D638
value.
Previously, ASTM standard test
method D1708 was used to
measure the tensile properties of
PAI and similar materials because
small samples can save materials.
The most widely used now is the
ASTM D638 1 Bar specimen. The
D1708 value contained is only used
as a historical reference and is not
used for comparison with the D638
value.

4.	Lubrication: 0.25 m/s, 6.9 MPa (75 fpm, 1000 psi)
5.	Lubrication: 4 m/s, 5.2 MPa (800 fpm, 750 psi)
6.	Drying: 0.25 m/s, 3.4 MPa (50 fpm, 500 psi)
7.	Drying: 4 m/s, 0.2 MPa (800 fpm, 31.25 psi)
8.	Lubrication
9.	Lubrication
10.	Dry
11.	Dry

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

Recommended distributors for this material

Susheng Import & Export Trading Co.,Ltd.

Tel: +86 21 5895 8519

Phone: +86 13424755533

Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China

