Accura® 25

Maximize reliability with no user R&D

Unspecified

3D Systems

Message:

Applications Functional components for assemblies and mock-ups for: Automotive styling parts - trim, fascia, and other components Consumer electronic components Toys Snap fit assemblies Master patterns for RTV/silicone molding Replace CNC machining of polypropylene to produce short-run plastic parts Simulate injection molded parts Concept and marketing models Features Look and feel of molded polypropylene High flexibility with excellent shape retention Outstanding feature resolution and accuracy High production speed Fully developed and tested build styles Benefits Increased market opportunities for models Reliable and robust functional prototypes Suitable for master patterns More parts and better system utilization

General Information		
Features	Good Dimensional Stability	
	Good Flexibility	
	Good Surface Finish	
Uses	Automotive Applications	
	Automotive Exterior Trim	
	Automotive Interior Trim	
	Consumer Applications	
	Electrical/Electronic Applications	
	Modeling Material	
	Molds/Dies/Tools	
	Prototyping	
	Toys	
Appearance	White	
Forms	Liquid	
Processing Method	3D Printing, Stereolithography	
Physical	Nominal Value	Unit
Density		

1	1.13	g/cm³	
2	1.19	g/cm³	
Viscosity (30°C)	250	mPa·s	
Critical Exposure	10.5	mJ/cm ²	
Penetration Depth	106.7	μm	
Hardness	Nominal Value	Unit	
Durometer Hardness (Shore D)	80		
Mechanical	Nominal Value	Unit	Test Method
Tensile Modulus	1590 to 1660	MPa	ASTM D638
Tensile Strength	38.0	MPa	ASTM D638
Tensile Elongation (Break)	13 to 20	%	ASTM D638
Flexural Modulus	1380 to 1660	MPa	ASTM D790
Flexural Strength	55.0 to 58.0	MPa	ASTM D790
Impact	Nominal Value	Unit	Test Method
Notched Izod Impact	19 to 24	J/m	ASTM D256
Thermal	Nominal Value	Unit	Test Method
Deflection Temperature Under Load			ASTM D648
0.45 MPa, Unannealed	58.0 to 63.0	°C	
1.8 MPa, Unannealed	51.0 to 55.0	°C	
Glass Transition Temperature	60.0	°C	DMA
CLTE - Flow			ASTM E831
0 to 20°C	1.1E-4	cm/cm/°C	
75 to 140°C	1.5E-4	cm/cm/°C	
NOTE			
1.	Liquid, 25°C		
2.	Solid, 25°C		

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

Recommended distributors for this material

Susheng Import & Export Trading Co.,Ltd.

Tel: +86 21 5895 8519

Phone: +86 13424755533

Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China

