# LUVOCOM® 1t-7370

# Polyamide 6/6T Copolymer

Lehmann & Voss & Co.

## Message:

LUVOCOM® 1t-7370 is a polyamide 6/6T copolymer (nylon 6/6T) material, and the filler is carbon fiber reinforced material. This product is available in North America, Africa and the Middle East, Latin America, Europe or Asia Pacific.

Carbon fiber reinforced material

LUVOCOM® The main features of 1t-7370 are:

Conductivity

Electrostatic protection

Good stiffness

Typical application areas include:

engineering/industrial accessories

textile/fiber

**Automotive Industry** 

business/office supplies

General Information
Filler / Reinforcement

| Features                       | Conductivity Rigid, good        |               |             |  |
|--------------------------------|---------------------------------|---------------|-------------|--|
|                                |                                 |               |             |  |
|                                | Good strength                   |               |             |  |
|                                |                                 |               |             |  |
| Uses                           | Gear                            |               |             |  |
|                                | Textile applications            |               |             |  |
|                                | Engineering accessories         |               |             |  |
|                                | Application in Automobile Field |               |             |  |
|                                | Business equipment              |               |             |  |
|                                | Cam                             |               |             |  |
|                                |                                 |               |             |  |
| Appearance                     | Natural color                   | Natural color |             |  |
| Physical                       | Nominal Value                   | Unit          | Test Method |  |
| Density                        | 1.21                            | g/cm³         | ISO 1183    |  |
| Molding Shrinkage              | 0.20 - 0.50                     | %             | DIN 16901   |  |
| Water Absorption (23°C, 24 hr) | < 0.80                          | %             |             |  |
| Mechanical                     | Nominal Value                   | Unit          | Test Method |  |
| Tensile Modulus                | 13000                           | МРа           | ISO 527-2   |  |
| Tensile Stress (Break)         | 210                             | МРа           | ISO 527-2   |  |
| Tensile Strain (Yield)         | 2.5                             | %             | ISO 527-2   |  |
| Flexural Modulus               | 10000                           | MPa           | ISO 178     |  |
| Flexural Stress                | 290                             | MPa           | ISO 178     |  |
| Coefficient of Friction        |                                 |               |             |  |
| Dynamic                        | 0.24                            |               |             |  |

| Static                                      | 0.20                   |          |             |
|---------------------------------------------|------------------------|----------|-------------|
| Flexural Strain at Flexural Strength        | 3.2                    | %        | ISO 178     |
| Maximum operating temperature-Short<br>Term | 160                    | °C       |             |
| Insulation Resistance                       |                        | ohms     | IEC 60167   |
| Impact                                      | Nominal Value          | Unit     | Test Method |
| Charpy Notched Impact Strength (23°C)       | 10                     | kJ/m²    | ISO 179/1eA |
| Charpy Unnotched Impact Strength (23°C)     | 63                     | kJ/m²    | ISO 179/1eU |
| Thermal                                     | Nominal Value          | Unit     | Test Method |
| Continuous Use Temperature                  | 135                    | °C       | UL 746B     |
| CLTE - Flow                                 | 2.7E-5                 | cm/cm/°C | DIN 53752   |
| Thermal Conductivity                        | 0.38                   | W/m/K    | DIN 52612   |
| Electrical                                  | Nominal Value          | Unit     | Test Method |
| Surface Resistivity                         | < 1.0E+5               | ohms     | IEC 60093   |
| Injection                                   | Nominal Value          | Unit     |             |
| Drying Temperature                          |                        |          |             |
| A                                           | 80.0                   | °C       |             |
| В                                           | 110                    | °C       |             |
| Drying Time                                 |                        |          |             |
| A                                           | 6.0 - 16               | hr       |             |
| В                                           | 4.0 - 6.0              | hr       |             |
| Suggested Max Moisture                      | 0.10                   | %        |             |
| Rear Temperature                            | 300 - 340              | °C       |             |
| Middle Temperature                          | 310 - 340              | °C       |             |
| Front Temperature                           |                        |          |             |
| <u>'</u>                                    | 320 - 340              | °C       |             |
| Nozzle Temperature                          | 320 - 340<br>330 - 340 | °C       |             |
| ·                                           |                        |          |             |

#### General

In general LUVOCOM® can be processed on conventional injection moulding machines while observing the usual technical guidelines.

Any added fibrous materials or fillers may have an abrasive effect. In this case the cylinder and screw should be protected against wear as is usual in the processing of reinforced thermoplastic materials.

Lengthy dwell times for the melts in the cylinder should be avoided.

Lower the temperatures during interruptions!

Predrying (optional)

It is advisable to predry the granulate with a suitable dryer immediately before processing.

The granulate may absorb moisture from the air.

Delivery Form & Storage

Unless indicated otherwise, the material is delivered as 3mm-long pellets in sealed bags on pallets.

Preferably storage should be effected in dry and normally temperatured rooms

Additional Information

During processing the moisture level should not exceed 0.1%, otherwise molecular degradation and surface defects (e.g. smearing) may occur. As the material absorbs water rapidly, originally sealed containers should only be opened immediately before processing. Processing temperatures above 340°C may very rapidly cause thermal damage and should therefore be avoided.

The processing notes provided merely represent a recommendation for general use. Due to the large variety of machines, geometries and volumes of parts, etc., it may be necessary to employ different settings according to the specific application.

High-temperature polymers place increased demands on the tool steels employed.

Please contact us for further information.

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

## Recommended distributors for this material

# Susheng Import & Export Trading Co.,Ltd.

Tel: +86 21 5895 8519

Phone: +86 13424755533 Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China



Page 3