AEI SX-0620:CM601

Crosslinked Polyethylene

AEI Compounds Limited

Message:

Oil resistant, flexible, halogen free, flame-retardant, silane crosslinkable insulation and sheathing for cable applications This is a flame-retardant, silane crosslinkable, flexible polyolefin compound curable by exposure to moist conditions. The graft component SX-0620 is mixed with a crosslinking catalyst masterbatch CM601 generally in the ratio 97:3. The SX-0620:CM601 compound has been developed to meet the requirements of IEC 92-359 SHF2 and EN50264 EM104 ship wiring and railway standards. The product shows good flexibility and confers tough sheathing protection. CM601catalyst masterbatch is normally added at 3% addition rate.

General Information				
Additive	Flame retardancy			
Features	Crosslinkable			
	Good flexibility			
	Oil resistance			
	Halogen-free			
	Flame retardancy			
Uses	Flame Retardant Insulation			
	Flame Retardant Jacketing			
	Cable sheath			
	Wire and cable applications			
Agency Ratings	EC 1907/2006 (REACH)			
	EN 50264			
	IEC 60092-359 SHF2			
RoHS Compliance	RoHS compliance			
Forms	Particle			
Processing Method	Extrusion			
Physical	Nominal Value	Unit	Test Method	
Density	1.48	g/cm³	BS 2782 620A	
Melt Mass-Flow Rate (MFR) (190°C/21.6 kg)	2.0	g/10 min	Internal method	
Mechanical	Nominal Value	Unit	Test Method	
Tensile Stress	10.0	MPa	IEC 60811-1-1	
Tensile Strain (Break)	170	%	IEC 60811-1-1	
Aging	Nominal Value	Unit	Test Method	
Change in Tensile Strength				
70°C, 168 hr, in IRM 903 oil	-10	%		
70°C, 168 hr, in water	-20	%		

100°C, 24 hr, in IRM 902 oil	7.7	%	
100°C, 72 hr, in IRM 902 oil	12	%	
100°C, 168 hr, in IRM 902 oil	-6.0	%	
120°C, 168 hr	12	%	IEC 60811-1-2
Change in Tensile Strain at Break			
70°C, 168 hr, in IRM 903 oil	-17	%	
70°C, 168 hr, in water	-20	%	
100°C, 24 hr, in IRM 902 oil	-13	%	
100°C, 72 hr, in IRM 902 oil	2.1	%	
100°C, 168 hr, in IRM 902 oil	-2.8	%	
120°C, 168 hr	-15	%	IEC 60811-1-2
Thermal	Nominal Value	Unit	Test Method
Thermoset ¹			IEC 60811-2-1
Elongation under load, 20N/cm ² : 200°C	60	%	IEC 60811-2-1
Permanent elongation after cooling	5.0	%	IEC 60811-2-1
Halogen Acid Gas Evolution		%	IEC 60754-1
Head Temperature	160	°C	
Flammability	Nominal Value	Unit	Test Method
Oxygen Index	29	%	ISO 4589-2
Additional Information	Nominal Value	Unit	Test Method

Crosslinking or Cure: A satisfactory cure can also be obtained either by immersion in hot water or exposure to low pressure steam at a temperature up to 70°C.

Extrusion	Nominal Value	Unit	
Cylinder Zone 1 Temp.	100	°C	
Cylinder Zone 2 Temp.	130	°C	
Cylinder Zone 3 Temp.	145	°C	
Cylinder Zone 4 Temp.	155	°C	
Melt Temperature	< 180	°C	
Die Temperature	165	°C	
Futuration instructions			

Extrusion instructions

Many modern thermoplastic extruders will process the material although a screw designed to give good homogenisation without excessive shear (which could cause unacceptable increases in melt temperature) should be used. An extruder with an L/D ratio (length/diameter) of 15-24 and an extruder screw with a compression ratio 1.2:1 to 2:1 are recommended.

NOTE

1.

Cure assessment by hot set test (forced cured at 80°C in water)

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

Recommended distributors for this material

Susheng Import & Export Trading Co.,Ltd.

Phone: +86 13424755533

Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China

