VEGEMAT® E45114

Biodegradable Polymers

VEGEPLAST S.A.S.

Message:

VEGEMAT[®] is a composite material concept obtained by transforming all the aerial parts of corn with neither separation nor purification of their constituent parts.

Thanks to its technical and chemical properties, this new bioplastique material based on corn, 100% biodegradable, is intended to substitute itself from usual plastics of petrochimical origins, design for injection.

Pieces mades from VEGEMAT[®] have the advantages of both wood and cardboard for their natural aspect, their biodegradability and the advantage of plastics for their ease of use.

The thermoplastic VEGEMAT[®] [®] granules are shaped by injection moulding with or without having to make any particular adjustment to tooling. VEGEMAT[®] existe is available in various grades that meet the technical requirements of industrialist.

* VEGEMAT® E4589 for making solid items (of > 4-5 mm thick).

* VEGEMAT® E45114 for slightly technical items (of between 2 and 4 mm thick).

* VEGEMAT® E45122 for making technical items (of < 2mm thick) requiring a really fluid material.

General Information			
Features	Updatable resources		
	Biodegradable		
Forms	Particles		
Processing Method	Injection molding		
Physical	Nominal Value	Unit	Test Method
Density	1.45	g/cm³	ISO 1183
Mechanical	Nominal Value	Unit	Test Method
Tensile Modulus	2800	MPa	ISO 527-2
Tensile Stress (Break)	20.0	MPa	ISO 527-2
Tensile Strain (Break)	0.71	%	ISO 527-2
Flexural Modulus	1800	MPa	ISO 178
Flexural Stress	27.0	MPa	ISO 178
Thermal	Nominal Value	Unit	
Melting Temperature	125 - 145	°C	
Additional Information	Nominal Value	Unit	
Maximum Hygrometry ¹	80	%	
Utilization Temperature	50 - 60	°C	
Injection	Nominal Value	Unit	
Rear Temperature	40.0 - 50.0	°C	
Middle Temperature	60.0 - 80.0	°C	
Front Temperature	100 - 130	°C	
Nozzle Temperature	110 - 150	°C	
Mold Temperature	20.0 - 60.0	°C	
Injection Rate	Fast		
Injection instructions			

Holding duration: 2 to 5 secSolidifying duration: 10 to 20 sec

NOTE

1.

without treating surface

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

Recommended distributors for this material

Susheng Import & Export Trading Co.,Ltd.

Tel: +86 21 5895 8519

Phone: +86 13424755533

Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China

