VESTAKEEP® Film 0FH90

Polyetheretherketone

Evonik Industries AG

Message:

VESTAKEEP® film 0FH90 is a cast film based on 100% unreinforced polyether ether ketone (PEEK). The film is amorphous with a matte/glossy surface finish

The material features low extrusion related internal stresses and is ideal to thermoform 3D parts from, e.g. small speaker membranes.

Application examples:

electrical insulation

thermoformed thin parts

loudspeaker membranes

Important notice: Amorphous PEEK film undergoes crystallization at above its glass transition temperature around 150°C. This should be taken into account upon processing as well as in final applications. The crystallization can only be reversed by heating to the melt followed by quenching.

General Information					
Features	Amorphous				
	Electrically Insulating				
	Flame Retardant				
	Food Contact Acceptable				
	Good Chemical Resistance				
	Good Impact Resistance				
	Good Toughness				
	Low Friction				
	Low to No Water Absorption				
	Recyclable Material				
RoHS Compliance	RoHS Compliant				
Forms	Film				
Processing Method	Thermoforming				
Physical	Nominal Value	Unit	Test Method		
Density (23°C)	1.26	g/cm³	ISO 1183		
Mechanical	Nominal Value	Unit	Test Method		
Tensile Modulus	2000	MPa	ISO 527-2		
Films	Nominal Value	Unit	Test Method		
Tensile Stress			ISO 527-3/100		
Yield	60.0	MPa			
	90.0	MPa			
Tensile Elongation (Break)	> 150	%	ISO 527-3/100		
Thermal	Nominal Value	Unit			
Glass Transition Temperature ¹	150	°C			
Crystallization Point - Cold	> 165	°C			
Surface Resistance	1.0E+14	ohms	IEC 60093		
Volume Resistance	1.0E+14	ohms	IEC 60093		

Breakdown Voltage			EN 60243-1
75.0 µm	13500	V	
125.0 μm	17500	V	
Electrical	Nominal Value	Unit	Test Method
Surface Resistivity	1.0E+15	ohms	IEC 60093
Volume Resistivity	1.0E+15	ohms·cm	IEC 60093
Electric Strength			IEC 60243-1
0.0750 mm	190	kV/mm	
0.125 mm	140	kV/mm	
Relative Permittivity			IEC 60250
50 Hz	2.80		
1 kHz	2.90		
1 MHz	2.80		
Dissipation Factor			IEC 60250
1 kHz	3.0E-3		
1 MHz	5.0E-3		
Comparative Tracking Index			IEC 60112
	200	V	
Solution A ²	175	V	
NOTE			
1.	2nd Heating		
2.	100 drops value		

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

Recommended distributors for this material

Susheng Import & Export Trading Co.,Ltd.

Tel: +86 21 5895 8519

Phone: +86 13424755533 Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China

