# Premi-Glas® 1261-28VE

### Vinyl Ester

Premix, Inc.

#### Message:

Premi-Glas® 1261-28 is a fiberglass reinforced thermoset Thick Molding Compound with proven effectiveness in a wide variety of applications. It uses a vinyl ester resin technology for optimal strength, and corrosion and heat resistance.

**Key Features and Benefits** 

Suitable for injection molding, injection-compression, or compression molding.

Excellent resistance to automotive chemicals, salt spray, and acids.

Replaces cast metals for reduced Noise, Vibration and Harshness.

TMC compounding process preserves glass integrity for strength vs BMC.

Excellent thermal properties and elevated temperature modulus retention.

| General Information                                                                                                                                                      |                                            |                           |                                            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------|--------------------------------------------|--|
| Filler / Reinforcement                                                                                                                                                   | Glass Fiber                                |                           |                                            |  |
| Features                                                                                                                                                                 | Good Corrosion Resistance                  |                           |                                            |  |
|                                                                                                                                                                          | Good Flow                                  |                           |                                            |  |
|                                                                                                                                                                          | Good Thermal Stability                     |                           |                                            |  |
|                                                                                                                                                                          | High Strength                              |                           |                                            |  |
|                                                                                                                                                                          | Noise Damping                              |                           |                                            |  |
|                                                                                                                                                                          | Vibration Damping                          |                           |                                            |  |
| Uses                                                                                                                                                                     | Automotive Under the Hood                  |                           |                                            |  |
|                                                                                                                                                                          | Metal Replacement                          |                           |                                            |  |
| Forms                                                                                                                                                                    | Pellets                                    |                           |                                            |  |
| Processing Method                                                                                                                                                        | Compression Molding                        |                           |                                            |  |
|                                                                                                                                                                          | Injection Molding                          |                           |                                            |  |
| Physical                                                                                                                                                                 | Nominal Value                              | Unit                      |                                            |  |
| Specific Gravity                                                                                                                                                         | 1.80                                       | g/cm³                     |                                            |  |
|                                                                                                                                                                          |                                            |                           |                                            |  |
| Molding Shrinkage - Flow                                                                                                                                                 | 0.040                                      | %                         |                                            |  |
| Molding Shrinkage - Flow  Mechanical                                                                                                                                     | 0.040<br>Nominal Value                     | %<br>Unit                 | Test Method                                |  |
| Mechanical                                                                                                                                                               |                                            |                           | Test Method ASTM D638                      |  |
| Mechanical                                                                                                                                                               | Nominal Value                              | Unit                      |                                            |  |
| Mechanical Tensile Strength (Compression Molded)                                                                                                                         | Nominal Value<br>65.5                      | Unit<br>MPa               | ASTM D638                                  |  |
| Mechanical  Tensile Strength (Compression Molded)  Flexural Modulus (Compression Molded)                                                                                 | Nominal Value 65.5 11000                   | Unit<br>MPa<br>MPa        | ASTM D638<br>ASTM D790                     |  |
| Mechanical  Tensile Strength (Compression Molded)  Flexural Modulus (Compression Molded)  Flexural Strength (Compression Molded)                                         | Nominal Value 65.5 11000 152               | Unit<br>MPa<br>MPa<br>MPa | ASTM D638 ASTM D790 ASTM D790              |  |
| Mechanical  Tensile Strength (Compression Molded)  Flexural Modulus (Compression Molded)  Flexural Strength (Compression Molded)  Compressive Strength 1                 | Nominal Value 65.5 11000 152 152           | Unit<br>MPa<br>MPa<br>MPa | ASTM D638 ASTM D790 ASTM D790              |  |
| Mechanical  Tensile Strength (Compression Molded)  Flexural Modulus (Compression Molded)  Flexural Strength (Compression Molded)  Compressive Strength   Poisson's Ratio | Nominal Value  65.5  11000  152  152  0.30 | Unit MPa MPa MPa MPa MPa  | ASTM D638  ASTM D790  ASTM D790  ASTM D695 |  |

| Deflection Temperature Under Load (1 | .8                 |          |             |
|--------------------------------------|--------------------|----------|-------------|
| MPa, Unannealed)                     | > 271              | °C       | ASTM D648   |
| Glass Transition Temperature         | 182                | °C       | ASTM D4065  |
| CLTE                                 |                    |          |             |
| Flow                                 | 2.5E-5             | cm/cm/°C |             |
| Transverse                           | 3.5E-5             | cm/cm/°C |             |
| Thermal Conductivity                 | 0.30               | W/m/K    |             |
| Electrical                           | Nominal Value      | Unit     | Test Method |
| Dielectric Strength                  | 15                 | kV/mm    | ASTM D149   |
| Injection                            | Nominal Value      | Unit     |             |
| Mold Temperature                     | 160                | °C       |             |
| Injection Pressure                   | 6.89               | MPa      |             |
| NOTE                                 |                    |          |             |
| 1.                                   | Compression Molded |          |             |

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

#### Recommended distributors for this material

## Susheng Import & Export Trading Co.,Ltd.

Tel: +86 21 5895 8519 Phone: +86 13424755533 Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China

