Ecoflex® F Blend C1200

Copolyester

BASF Corporation

Message:

ecoflex® F Blend C1200 is our biodegradable, statistical, aliphatic-aromatic copolyester based on the monomers 1,4-butanediol, adipic acid and terephthalic acid in the polymer chain. ecoflex® F Blend C1200 will biodegrade to the basic monomers 1,4-butanediol, adipic acid and terephthalic acid and eventually to carbon dioxide, water and biomass when metabolized in the soil or compost under standard conditions. ecoflex® F Blend C1200 has properties similar to PE-LD because of its high molecular weight and its long chain branched molecular structure.

General Information	
Features	Aliphatic
	Aromatic
	Biodegradable
	Branched Polymer Structure
	Compostable
	Excellent Printability
	Food Contact Acceptable
	Good Processability
	Good Thermal Stability
	High Elongation
	High Molecular Weight
	Semi Crystalline
	Weldable
Uses	Agricultural Applications
	Bags
	Blown Film
	Cast Film
	Compostable Products
	Packaging
Agency Ratings	ASTM D 6400
	DIN EN 13432
	EC 1907/2006 (REACH)
	EU 2002/72/EC
	FDA FCN 907
RoHS Compliance	RoHS Compliant
Appearance	Clear/Transparent
	Translucent

Pellets

Blown Film Cast Film

Extrusion

Physical	Nominal Value	Unit	Test Method
Density	1.25 to 1.27	g/cm³	ISO 1183
Melt Mass-Flow Rate (MFR) (190°C/2.16 kg)	2.7 to 4.9	g/10 min	ISO 1133
Melt Volume-Flow Rate (MVR) (190°C/2.16 kg)	2.50 to 4.50	cm³/10min	ISO 1133
Hardness	Nominal Value	Unit	Test Method
Shore Hardness (Shore D)	32		ISO 868
Films	Nominal Value	Unit	Test Method
Film Thickness - Tested	50	μm	
Tensile Stress			ISO 527-3
MD : Break, 50 µm, Blown Film	36.0	MPa	
TD : Break, 50 μm, Blown Film	45.0	MPa	
MD : 50 µm, Blown Film	35.0	MPa	
TD : 50 μm, Blown Film	44.0	MPa	
Tensile Elongation			ISO 527-3
MD : Break, 50 µm, Blown Film	560	%	
TD : Break, 50 μm, Blown Film	710	%	
Oxygen Transmission Rate (23°C, 0% RH, 50 µm, Blown Film)	1200	cm³/m²/24 hr	ASTM D3985
Water Vapor Transmission Rate (23°C, 85% RH, 50 µm, Blown Film)	140	g/m²/24 hr	ASTM F1249
Thermal	Nominal Value	Unit	Test Method
Vicat Softening Temperature	91.0	°C	ISO 306/A50
Melting Temperature (DSC)	110 to 120	°C	DSC
Optical	Nominal Value	Unit	Test Method
Transmittance (50.0 μm, Blown Film)	82.0	%	ASTM D1003
Additional Information	Nominal Value	Unit	Test Method
Failure Energy - Dyna Test ¹ (50.0 µm)	240	J/cm	DIN 53373
NOTE			
1.	Blown Film		

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

Recommended distributors for this material

Susheng Import & Export Trading Co.,Ltd.

Tel: +86 21 5895 8519

Phone: +86 13424755533

Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China

