Therma-Tech™ TT9200-5003 EC Anthracite (EM10018998BJ)

Polyphenylene Sulfide PolyOne Corporation

Message:

Therma-Tech™ Thermal Management Compounds have been engineered to combine the heat transfer and cooling capabilities of metals with the design freedom, weight reduction and cost advantages of thermoplastics. These materials provide the benefits of proprietary conductive additive technologies and the performance of select engineering thermoplastic resins. Therma-Tech compounds have been shown to improve thermal conductivity up to 100-times that of conventional plastics and can be used in a wide range of thermal management applications.

General Information				
Filler / Reinforcement	Glass fiber reinforced material			
Features	Conductivity			
	Heat conduction			
Uses	Electrical/Electronic Applications			
	Industrial application			
	Parts under the hood of a car			
	Application in Automobile Field			
	Shell			
	Consumer goods application field			
RoHS Compliance	RoHS compliance			
Forms	Particle			
Processing Method	Extrusion			
	Injection molding			
Physical	Nominal Value	Unit	Test Method	
Specific Gravity	1.78	g/cm³	ISO 1183	
Molding Shrinkage - Flow (Injection				
Molded)	0.20 - 0.40	%	ISO 294-4	
Mechanical	Nominal Value	Unit	Test Method	
Tensile Modulus ¹	17500	MPa	ISO 527	
Tensile Elongation ² (Break)	0.30 - 0.50	%	ISO 527	
Flexural Modulus ³ (Injection Molded)	14500	MPa	ISO 178	
Flexural Strength ⁴ (Injection Molded)	75.0	MPa	ISO 178	
Impact	Nominal Value	Unit	Test Method	
Charpy Notched Impact Strength (23°C)	2.3	kJ/m²	ISO 179	
Charpy Unnotched Impact Strength (23°C)	3.9	kJ/m²	ISO 179	
Thermal	Nominal Value	Unit	Test Method	

Heat Deflection Temperature (1.8 MPa,			
Annealed)	260	°C	ISO 75-2/A
Thermal Conductivity ⁵	2.2 - 2.6	W/m/K	
Electrical	Nominal Value	Unit	Test Method
Surface Resistivity	< 1.0E+4	ohms	IEC 60093
Flammability	Nominal Value	Unit	Test Method
Glow Wire Flammability Index			IEC 60695-2-12
0.8 mm	960	°C	IEC 60695-2-12
1.6 mm	960	°C	IEC 60695-2-12
3.0 mm	> 960	°C	IEC 60695-2-12
Glow Wire Ignition Temperature (3.0 mm)	> 960	°C	IEC 60695-2-13
Injection	Nominal Value	Unit	
Processing (Melt) Temp	310 - 340	°C	
Mold Temperature	140 - 170	°C	
NOTE			
1.	Type 1, 1.0mm/min		
2.	Type 1, 50mm/min		
3.	10 mm/min		
4.	10 mm/min		
	Through Plane with Modified		
	Transient Plane Source technique,		

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

Recommended distributors for this material

Susheng Import & Export Trading Co.,Ltd.

Tel: +86 21 5895 8519

Phone: +86 13424755533 Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China

