ZEONEX® 330R

Cyclic Olefin Copolymer

Zeon Corporation

Message:

ZEONEX[®] - Cyclo Olefin Polymer (COP) offers excellent optical properties for creating optical parts for cameras and laser beam printers. ZEONEX's high purity is suitable for a wide range of medical packaging products, while its low dielectric constant and loss tangents are appropriate for electrical insulation applications.

General Information					
Features	Copolymer				
	Good Chemical Resistance				
	Good Dimensional Stability				
	Good Electrical Properties				
	High Heat Resistance				
	High Purity				
	Low Moisture Absorption				
	Low Specific Gravity				
	Opticals				
Uses	Camera Applications				
	Electrical/Electronic Applications				
	Electronic Insulation				
	Lenses				
	Medical Packaging				
	Optical Applications				
Appearance	Clear/Transparent				
Processing Method	Injection Molding				
Physical	Nominal Value	Unit	Test Method		
Specific Gravity	0.948	g/cm ³	ASTM D792		
Melt Mass-Flow Rate (MFR) (260°C/2.1		9,			
kg)	11	g/10 min	ISO 1133		
Water Absorption (Equilibrium)	< 0.010	%	ASTM D570		
Hardness	Nominal Value	Unit	Test Method		
Pencil Hardness	ЗН		JIS K5401		
Injection Velocity	30.0 to 80.0	cm³/s			
Screw Speed	20 to 60	rpm			
Mechanical	Nominal Value	Unit	Test Method		
Tensile Stress	45.0	MPa	ISO 527-2		
Tensile Strain (Break)	3.0	%	ISO 527-2		
Flexural Modulus	3100	MPa	ISO 178		

Flexural Stress	91.0	MPa	ISO 178
Impact	Nominal Value	Unit	Test Method
Notched Izod Impact (3.20 mm)	13	J/m	ASTM D256
Thermal	Nominal Value	Unit	Test Method
Deflection Temperature Under Load (1.8			
MPa, Unannealed)	103	°C	ASTM D648
Glass Transition Temperature	123	°C	JIS K7121
CLTE - Flow	7.0E-5	cm/cm/°C	ASTM E831
Electrical	Nominal Value	Unit	Test Method
Volume Resistivity	> 1.0E+16	ohms·cm	IEC 60093
Dielectric Strength ¹ (1.00 mm)	40	kV/mm	ASTM D149
Dielectric Constant (1 MHz)	2.30		IEC 60250
Dissipation Factor (1 MHz)	4.0E-4		IEC 60250
Flammability	Nominal Value	Unit	Test Method
Flame Rating	НВ		UL 94
Optical	Nominal Value	Unit	Test Method
Refractive Index	1.509		ASTM D542
Transmittance (3000 µm)	92.0	%	ASTM D1003
Injection	Nominal Value	Unit	
Drying Temperature	90.0 to 100	°C	
Drying Time	4.0 to 10	hr	
Rear Temperature	240 to 260	°C	
Middle Temperature	240 to 260	°C	
Front Temperature	240 to 260	°C	
Mold Temperature	90.0 to 120	°C	
Injection Pressure	50.0 to 180	MPa	
Holding Pressure	50.0 to 180	MPa	
Back Pressure	5.00 to 10.0	MPa	
NOTE			
1.	Method A (Short-Time)		

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

Recommended distributors for this material

Susheng Import & Export Trading Co.,Ltd.

Tel: +86 21 5895 8519

Phone: +86 13424755533

Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China

