Bormod[™] BF970MO

Polypropylene Copolymer

Borealis AG

Message:

Bormod BF970MO is a heterophasic copolymer. This product is characterized by an optimum combination of very high stiffness and high impact strength. This grade uses Borealis Nucleation Technology (BNT) to increase productivity by cycle time reduction. BNT in combination with excellent stiffness and good flow properties creates a high potential for wall-thickness reduction. Products originating from this grade have very good demoulding properties, well-balanced mechanical properties, excellent dimension consistency with respect to different colors and good organoleptic properties.

General Information					
UL YellowCard	E108112-100608397				
Additive	Nucleating Agent				
Features	Copolymer				
	Fast Molding Cycle				
	Good Dimensional Stability				
	Good Flow				
	Good Mold Release				
	Good Organoleptic Properties				
	High Impact Resistance				
	High Stiffness				
	Nucleated				
Uses	Automotive Interior Parts				
Uses	Crates				
	Engineering Parts				
	Pails				
Forms	Pellets				
Processing Method	Injection Molding				
Physical	Nominal Value	Unit	Test Method		
Density	0.905	g/cm³	ISO 1183		
Melt Mass-Flow Rate (MFR) (230°C/2.16					
kg)	20	g/10 min	ISO 1133		
Molding Shrinkage	1.0 to 2.0	%			
Hardness	Nominal Value	Unit	Test Method		
Rockwell Hardness (R-Scale)	89		ISO 2039-2		
Mechanical	Nominal Value	Unit	Test Method		
Tensile Modulus (Injection Molded)	1500	MPa	ISO 527-2/1		
Tensile Stress (Yield, Injection Molded)	27.0	MPa	ISO 527-2/50		
Tensile Strain (Yield, Injection Molded)	5.0	%	ISO 527-2/50		
Impact	Nominal Value	Unit	Test Method		

Charpy Notched Impact Strength			ISO 179/1eA
-20°C	4.5	kJ/m²	
23°C	8.5	kJ/m²	
Multi-Axial Instrumented Impact Ener	ду		ISO 6603-2
-20°C, Injection Molded, Total			
Penetration Energy	15.0	J	
0°C, Injection Molded, Total Penetra	ation		
Energy	20.0	J	
Thermal	Nominal Value	Unit	Test Method
Heat Deflection Temperature ¹ (0.45 M	MPa,		
Unannealed)	105	°C	ISO 75-2/B
Injection	Nominal Value	Unit	
Processing (Melt) Temp	210 to 260	°C	
Mold Temperature	10.0 to 30.0	°C	
Injection Rate	Fast		
Holding Pressure	20.0 to 50.0	MPa	
NOTE			
1.	Injection molded specimer		

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

Recommended distributors for this material

Susheng Import & Export Trading Co.,Ltd.

Tel: +86 21 5895 8519

Phone: +86 13424755533

Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China

